联系电话 400-3769284
  • 栏目幻灯二
  • 栏目幻灯一
  • 最新公告:
    诚信为本,半岛综合体育官网登录入口,诚信永远不变...
    热门分类: 第一系列 | 第二系列 | ......>>更多
    行业资讯 当前位置: 首页 > 新闻动态 > 行业资讯
    低成本和低投资门槛碳纳米管生产技术的新突破——天然气为原料生产锂电池用碳纳米管半岛综合体育官网登录入口添加时间:2023-07-22

      低成本和低投资门槛碳纳米管生产技术的新突破——天然气为原料生产锂电池用碳纳米管

      碳纳米管是20世纪90年代日本科学家Iijima先生(Iijima Sumio. Helical microtubules of graphitic carbon. Nature,1991,354:56~58)发现的新材料,是石墨化的碳原子卷曲而成的纳米级无缝中空管状结构。碳纳米管的物理结构就决定了,碳纳米管具有多种优异的力学、热学和电学性能。例如,碳纳米管的导热性是铜的5倍,拉伸强度达到50~200GPa是钢的100倍,密度是钢的1/6。

      以碳纳米管在新能源电池行业的应用作为案例来分析,锂电池由正极材料、负极材料、隔膜、电解液、导电剂、结构件、BMS等构成。各种材料占锂电池的成本,大致如下:

      如果投资锂电池的正极材料,资金动则几十亿人民币起步,而且竞争激烈。例如,2021年2月4日,中核钛白发布公告称,拟通过全资子公司东方钛业投资建设年产50万吨磷酸铁锂项目,预计总投资121亿元,皆为公司自有自筹资金。2021年6月,湘潭电化也公告,通过参股公司湖南裕能在贵州新建年产30万吨磷酸铁和30万吨磷酸铁锂,投资总额为70亿元;湖南裕能还拟在昆明市建设年产35万吨磷酸铁和35万吨磷酸铁锂项目,预计总投资100亿元。

      导电剂在锂电池里占比少,但是对锂电池的性能具有很大的影响。锂电池的导电剂,有不同的种类,都是各种不同结构的碳材料。包括类球形的炭黑(颗粒直径数十nm级),片状的石墨片,以及一维线状的碳纳米管。所有不同种类的锂电池导电剂中,以碳纳米管的添加量最少,性能最好,市场占比最大。

      锂电池的负极、隔膜、电解液、铜箔等产业链,投资资金动则也是十亿元起步。与之不同的是,虽然导电剂的成本,大致只占锂电池的2%左右。但是,由于锂电池行业现在已是万亿级的大产业,所以现在锂电池导电剂也成为了大的产业,具有巨大的前景和光明的前途。

      经国内多家机构调研和预计,一致认为在未来五年,全球碳纳米管导电剂浆料需求量将保持40.8%的年复合增长速度, 2023年需求量将达17.72万吨。国内碳纳米管导电剂市场,随着动力电池产业的快速增长,预计到2023年将达到62亿元的国内市场产值。由于固态电池内部比液态电池导电性更差,需要添加更多的碳纳米管导电剂,来提高其内部的导电性。以后,随着固态电池的产业化会导致隔膜和电解液的取消,但是会利好碳纳米管导电剂产业。随着锂电池高镍正极、硅基负极和固态电池等新技术应用规模扩大,碳纳米管的使用量会进一步大量增长,未来单是在锂电池领域就会成为每年百亿级的市场。

      碳纳米管作为锂电池产业链里的导电剂,只是碳纳米管产业化的“冰山一角”,是资本和传统新材料企业认识碳纳米管的第一步。更重要的是,1996年诺贝尔化学奖得主尊敬的Richard E. Smalley先生曾教导我们,“碳纳米管是人们所能制造出来的最强、最刚、最硬的分子,同时是最好的热和电的分子导体”。碳纳米管在芯片晶体管、生物医疗、太阳能光伏电池、轮胎、燃料电池、药物输送、储氢、高分子材料、电容器、复合材料等会有更广阔市场,会持续突破更多的大市场,未来有望成为一个千亿级市场的产业。

      国内的碳纳米管企业也在此时进入了快速发展阶段,已经有天奈科技、道氏技术等多家知名企业介入碳纳米管业务,且每年能实现数亿的利润。

      目前,国内的碳纳米管生厂商基本选择丙烯作为碳源,流化床作为生产设备的技术路线。丙烯是特种低温石化化学品,其供应商较少,长途运输成本很高。而且,丙烯的采购和使用有严格的监管要求。

      新建一个类似的大型碳纳米管生产工厂,投资资金动则几个亿,门槛较高。高昂的投资资金门槛,挡住了很多想介入碳纳米管和新能源碳材料行业的投资者。

      有鉴于此,赵社涛团队在二十多年碳纳米管研发和生产经验的基础上,坐冷板凳持续钻研,终于开发出了一种适用于中小型企业,能大幅度降低投资门槛的天然气生产碳纳米管新技术。该技术,以天然气或纯甲烷为原料,在较高的催化剂倍率下,生产出符合锂电池工厂要求的碳纳米管。只有较高的催化剂倍率,才能控制住天然气生产碳纳米管的生产成本。天然气是一种容易获取的工业原料,广泛分布于国内各个城市。而且天然气,直接连接管道就可以使用,不需要运输和储存装置。不像丙烯是危险的特种石化化学品,需要储存装置和设施。天然气的吨使用成本,也远小于远距离运输到工厂的丙烯吨成本。

      该技术以天然气为原料能生产出符合锂电池大型工厂要求的,平均管径10nm-20nm碳纳米管,碳纳米管一次纯度能达到90%—96.5%。

      相比目前主流工厂采用的丙烯+流化床工艺生产的碳纳米管,赵社涛团队新开发的天然气生产碳纳米管新技术,具有较高的催化剂倍率和较低的天然气原料吨成本,从而具有更低的生产成本优势。

      而且,该技术还能和移动床生产设备兼容。众所周知,移动床的设备投资成本远小于流化床,操作难度也远小于流化床。移动床设备的交货周期,安装周期也比流化床生产设备大大缩短。使用赵社涛团队突破的天然气生产碳纳米管新技术,结合移动床设备,就能让广大中小企业,大幅度降低投资门槛的入局,介入碳纳米管和新能源材料产业,还能获得更低的生产成本竞争优势。对此技术突破感兴趣的,请联系赵社涛。

      声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容图片侵权或者其他问题,请联系本站作侵删。侵权投诉

      on Carbon Nanotube Film and Application in Optoelectronic Integration”的综述文章,该综述全面介绍了高纯度半导体

      HS-3000A电子拉力试验机适用于寻求材料力与形变关系的实验,可对金属,非金属的原材料、加工件、成品进行拉伸、弯曲、剥离、压缩、压陷、附着力、撕裂等多项力学实验及分析。球磨分散和超声分散

      据麦姆斯咨询报道,日本电气(NEC Corporation)近日宣布,其成功开发出了世界上首款采用高纯度半导体

      粉料的产能,同时推出了新一代的高固含导电产品,相较现有产品,固含提升在2倍以上,进一步降低单壁

      和精确的直接书写方法,通过使用制备的具有良好分散性的印刷油墨,挤出有序的片状物,控制多孔

      包裹的棉和氨纶纱线,通过定制纺纱设备制造的电极如图1a所示。首先,研究人员将两个

      0.5 cm,以适应多种纱线的纺织。为了确保顺利进纱,研究人员使用了弹簧张紧系统来控制张力。

      中硅的主要候选材料。在11 月 17 日发表于《科学》杂志的一篇评论文章中,西北大学的Mark Hersam及其合作者概述了

      国家空间科学中心空间天气学国家重点实验室陈睿副研究员、韩建伟研究员团队与北京大学电子学院张志勇教授课题组、中科院微电子所李博研究员课题组合作,针对

      “桥接策略”来合成这种富含用于 ORR 催化的高活性单原子 Fe 位点和用于 OER催化的高性能NiCo

      Nafion 溶液把CN T2TiO2 固定到玻碳电极上制成CN T2TiO2

      独特的物理/化学性质在气体分离和捕获、催化、润滑、药物输送等领域就可实现体材难以实现的功能,因而具有广阔的应用前景。在

      纱线」(Carbon nanotube yarns),那么在谈具体的研究细节之前,我们先来解决一个问题:

      器件现在正在越来越接近硅的能力,最新的进展也在最近举办的IEEE电子器件会议IEDM上揭晓。会上,来自台积电,加州大学圣地亚哥分校和斯坦福大学的工程师介绍了一种新的制造工艺,该工艺可以更好地控制

      器件现在正在越来越接近硅的能力,最新的进展也在最近举办的IEEE电子器件会议IEDM上揭晓。会上,来自台积电,加州大学圣地亚哥分校和斯坦福大学的工程师介绍了一种

      更轻、性能更佳的导电材料,ORNL研究人员在平整的铜基板上沉积了排列整齐的

      ,从而形成了一种金属基质复合材料,其电流处理能力和机械性能均比铜材料本身更好。

      的基石,随着摩尔定律逐渐逼近极限,寻找硅材料替代品显得尤为迫切。下一条集成电路材料“赛道”在哪里?日前举行的东方科技论坛吸引了国内多位专家参与研讨。目前,相比于石墨烯、二维材料等选项,

      领域的市场渗透率不断提升,马太效应态势下,行业巨头间的抢食也将愈加激烈。

      。该设备在1500次循环后的容量保持率优于87%。研究人员说,他们的发现克服了将硅用作阳极的许多障碍,开拓了锂离子

      在芯片设计中,电路上实现代码的方法有很多。研究人员们通过模拟发现,所有的不同逻辑门组合,不同的组合对金属

      级缺陷和可变性,以及处理它们面临的挑战,阻碍了它们在微电子领域的实际应用。

      日前,麻省理工学院助理教授Max Shulaker在DARPA电子复兴倡议(ERI)峰会上展示了一块

      是Shulaker在斯坦福大学期间,协助 H.-S. Philip Wong

      /聚合物复合材料的制备方法及其聚合物结构复合材料和聚合物功能复合材料中的应用研究情况,在此基础上,分析了

      来自麻省理工学院的化学教授TimothySwager和他的团队利用改进过的

      研制出了一种新型传感器,这种造价只有0.25美元的传感器可以检测出果实在成熟过程中所释放出的一种化学成分——乙烯,将

      在Nano Letters杂志描述的研究中,Barron和他的团队在尝试了各种方法从各种污染物中清洁

      进行了艰苦的阻力测量。 结果是他们可以去除的杂质越多,阻力测量值越准确和一致。

      线传感器网络的优化配置问题,根据检测覆盖范围最大且传感器数量最小的原则,提出了一种基于免疫算法的求解方案。该方案将要求解的传感器位置作为抗体,设计了抗体编码方式以及免疫算法的过程。仿真实验结果表明,免疫算法能够有效地求得最佳解决方案。

      记者近日从中国科技大学获悉,中国科学院院士郭光灿领导的中科院量子信息重点实验室在基于

      和发现10年的石墨烯等微细碳材料,电子部件终于开始实用化。包括最近性能大幅提高的金刚石半导体在内,“碳电子”将大大改变电子部件和电子电路的形态。

      制造微型芯片的方法,这一成果可以让我们制造更强的芯片,使得曲面电脑、可注射芯片成为可能。

      的圆柱状物,它有包括从超级计算机到效能比更高的智能手机在内的许多梦幻般应用。问题是,它们不容易制造,推出商业化

      FinFET的芯片。在2月份举行的这次Common Platform 2013

      蓝色巨人IBM的科学家们再次展示了他们雄厚的科研实力:历史上第一次,使用标准的主流半导体工艺,将一万多个

      光学天线,可以将接收光波的范围缩小到亚波长尺度上,这样就扩大了太阳能面板接收光能量的波长范围,能够收集到红外线的能量,从而为

      集成电路领域取得的重要进展。化学与分子工程学院李彦教授和美国杜克大学刘杰教授

      来自IBM、苏黎世理工学院和美国普渡大学的工程师近日表示,他们构建出了首个10

      (PAN I/ CN T) 复合材料。采用透射电子显微镜(TEM )、紫外2可见光光谱(UV 2V IS)、傅立叶变换红外光谱(FT IR)、热失重分析(TGA ) 及差示扫描量热法(

      具备自我修复(self-repairing)的功能,就像是植物行光合作用。这种光电化学(photoelectrochemical)太阳能

      的方法 美国康奈尔大学(Cornell University)研究人员制作出高效太阳能

      的潜在用途是无穷无尽的,仅在半导体行业就存在着大量的潜在应用。研究人员已经成功将

      产生大电流(新型发电方式) 麻省理工学院科学家发现一种新发电方式,利用

      研究目的,在硅衬底上引进很薄的二氧化硅层,以二氧化硅层作为绝缘势垒,然后在二氧化硅界面层上直接生长CNT,来研究二氧化硅绝缘势

      Nafion 溶液把CN T2TiO2 固定到玻碳电极上制成CN T2TiO2 / GC 修饰电极,

      其与微机电系统(MEMS) 的结合提供了可能,这种结合“Top - down”与“Bottom2up”的方法是微米/半岛综合体育官网登录入口半岛综合体育官网登录入口半岛综合体育官网登录入口